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I. Introduction

Models that build low-dimensional representations of
the data like autoencoders and Generative Adversarial
Networks (GANs) have seen lots of attention over the
years. This low-dimensional representation, also called a
latent space, has benefits such as creating new instances
of the data, noise reduction, and more interpretable data
visualizations. Because the latent space may reveal ex-
planatory factors, observations and operations in the la-
tent space can be useful. In the case of data visualization,
the dataset may exhibit clustering in the latent space,
giving the observer new ways to understand the data. In
the case of object pose estimation, the latent space can be
used to determine an object’s orientation. In the case of
data generation, the latent space can be used to generate
new and usable data.

The latent space of a trained model contains an implicit
representation within it. For the purposes of this paper,
the representation is of a physical object. An object’s
representation in the latent space dictates the model’s ap-
plication and performance. More specifically, applications
that utilize a latent space are influenced by the organi-
zation of object data in the latent space with respect to
factors of variation. Factors of variation refer to observable
characteristics that explain the state of an object(in this
case). For example in [1] and [2] the relative positioning
of latent vectors generated from images can be used to
determine the orientation of objects. Additionally, new
data may be generated by interpolating between observed
data points in the latent space. This can yield novel but
possible instances of the data.

Because the latent space is at the heart of generative
models, metrics associated with the latent space could
serve as a good means for model comparison, determin-
ing model confidence, and measuring model performance.
Generally, applicable metrics are specific to their down-
stream task, however, there are metrics that are general
and allow for model comparison. These metrics are largely
centered around disentanglement. “A disentangled repre-
sentation is generally described as one which separates
the factors of variation, explicitly representing the im-
portant attributes of the data” [3]. Factors of variation
are expected to remain invariant to one another during
interpolation if they are disentangled. A disentangled rep-
resentation can “improve predictive performance, reduce
sample complexity, offer interpretability, improve fairness
and have been identified as a way to overcome shortcut
learning ” [4].

There are a relatively limited number of examples of
general measures of disentanglement [4]. The examples
that do, face challenges. In [5] the authors “theoretically
show that the unsupervised learning of disentangled repre-
sentations is fundamentally impossible without inductive
biases on both the models and the data.” In [6] the
authors make the point that there is no widely accepted
definition of disentanglement, and furthermore show that
most disentanglement metrics do not satisfy the desired
properties for metrics in general.

While disentanglement is admittedly the most impor-
tant aspect related to downstream performance, assessing
implicit representation by measuring how well factors of
variation are organized in the latent space could provide
an additional basis for quality measurement and model
comparison, leading to increased confidence in deployed
models. Furthermore, investigating the organization of
factors of variation in the latent space may allow one to
verify the existence of abstract representations such as if
the model’s representation of an object is that of a rigid
body, and thus, adding to the confidence in the model if
the object is in fact a rigid body. If there is a link between
models that exhibit good downstream performance and
organization in the latent space with respect to factors of
variation, models can better be compared and users will
have more information about what a model has learned.

The focus of this paper is on the organization of object
data in the latent space as it pertains to a single factor
of variation. The application presented here is based on
a technique developed in [1] where the orientation of an
object is determined by measuring the relative positioning
of latent vectors generated by an autoencoder. Our ap-
proach is an analysis of interpolation paths of a specific
factor of variation through the latent space. The approach
is applicable to models trained on data with quantitative
factors of variation where the ground truth is known.

To the best of our knowledge, there exists no general
metric for measuring the organization of factors of varia-
tion in the latent space. The challenges to devising such a
measure based on interpolation paths are:

1) There is no clear methodology for establishing latent
space organization with respect to factors of varia-
tion.

2) A quantitative measure must be developed for mea-
suring interpolative quality.

3) A methodology for entirely and finitely encapsulat-
ing the nature of a single factor of variation must be



devised.
4) All methodologies must work in an N-dimensional

latent space
5) The approach must account for the precarious nature

of distance in the latent space.
We propose an analysis methodology for the quanti-

tative measurement of interpolative quality using a la-
tent space B-Spline analysis. This is accomplished by
fitting B-splines to interpolation paths we call trajectories,
and comparing them to a quaternion and random vector
spaces. Figure 1 shows examples of trajectory B-spines in
the quaternion, latent, and random spaces. The analysis
includes a set of metrics (torsion and arc length), to
investigate the relative positioning and thus the amount
of order in a latent space for a single factor of variation.
The amount of order in the latent space is measured by
analyzing the smoothness (lower torsion and arc length) of
interpolation paths transcribed in the three vector spaces.
Our analysis is based on an autoencoder pose estimation
model but has implications outside of this example. Our
main contributions are:

1) A methodology for creating interpolation paths in
the latent space.

2) Metrics for measuring the interpolative quality of
those paths.

The first contribution is specific to pose estimation
models like those used in [1], [7]. The second contribution
can be applied to any latent space where the ground truth
of factors of variation is known.

We chose not to use the term interpolation quality but
instead interpolative quality because the former implies
the quality of the output during interpolation. We, on
the other hand, are focused on the relative position of
data points in the latent space and the metrics of the
interpolation path themselves.

Our approach provides a means of comparison that
is not based on disentanglement which is often hard to
define, and measure. Contribution 1 also applies outside
of just the one application for which it was developed.
Additionally, the nature of our approach allows us to
compare models despite the added complexities of dealing
with distances in the latent space. Finally, our approach
shows that, in our test case, the model does demonstrate
an ordering of quantifiable factors of variation in the latent
space. Figure 2 shows that the arc length and torsion of
the autoencoder-generated latent space is lower on average
than the random space.

Our analysis shows that the autoencoder-based ap-
proach to determining object pose demonstrates spacial
organization in the latent space, giving rise to a new
method for model quality comparison and assessment for
object representations.

II. Disclaimer
No approval or endorsement of any commercial product

by the authors is intended or implied. Certain commercial

(a) Quaternion Space B-spline

(b) Autoencoder Latent Space B-
spline

(c) Random Space B-spline

Fig. 1: B-splines are calculated for the quaternion space,
the latent space, and the random space. As expected, the
random space is the most chaotic with the longest arc
length, where the quaternion space is smoother with the
shortest arc length, and the autoencoder-generated latent
space falls in between.

software systems are identified in this paper to facilitate
understanding. Such identification does not imply that
these software systems are necessarily the best available
for the purpose.
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Fig. 2: A comparison of trajectories for the single image
encoded latent space.
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