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Abstract— We present a landmark discovery algorithm to au-
tomatically detect and identify optimal landmarks for aerial lo-
calization in visual terrain-relative navigation (VTRN) pipelines
for Global Navigation Satellite Systems (GNSS) denied naviga-
tion. Our method employs self-supervised contrastive learning
to identify and encode visual landmarks despite illumination,
viewpoint, and seasonal changes. Using publicly available aerial
imagery, we demonstrate that our approach can detect and re-
identify sparse landmarks across seasons and enable localiza-
tion within 10 meters. Lastly, our method minimizes the storage
requirement compared to current VTRN methods, expanding
the navigable area size.

I. INTRODUCTION

In absence of Global Navigation Satellite Systems
(GNSS), uninhabited aerial vehicles (UAV) can pinpoint their
exact geolocation by matching images from their naviga-
tional camera (NAVCAM) to known, georeferenced images,
in a process known as visual terrain-relative navigation
(VTRN). In the last few decades, image registration-based
VTRN approaches have dominated GNSS-denied robotic
navigation systems, driving applications like planetary entry,
landing, and descent (EDL) and cruise missile guidance [1],
[2]. These approaches typically rely on registration backends,
powered by area-based template matching and/or feature-
based homography estimation, to provide precise geoloca-
tion [2]. However, they face two problems: First, they fail
when faced with seasonal or illumination variation, relying
on strategic mission planning [1], [2] or deep learning to
compensate [3]. Second, they require georeferenced imagery
or extracted local feature descriptors to be stored on memory-
constrained UAVs which limits navigation area size.

In contrast, landmark-based VTRN approaches are robust
and lightweight, providing accurate but sparser geolocation
updates by re-identifying a small set of known landmarks [4],
[5], [6]. These landmarks can be encoded with invariances
to common VTRN perturbations like seasonal variation and
cached as low-dimensional vectors. For landmark-based ap-
proaches, the main challenge is choosing a set of landmarks
that is large enough to provide a steady rate of geolocation
updates, but with each landmark being easily re-identifiable.

Today, convolutional neural networks (CNN) have made
it possible to easily detect and identify such landmarks
despite appearance and illumination variations, but expert
guidance is generally still used to select good landmarks
for CNN training. Examples of this include crater detection
for lunar EDL [4], and detection of various human-made
structures (roads, houses, and buildings) for UAV navigation
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Fig. 1: Examples images from the dataset and proposed
landmarks via our discovery module. F2/3/4 are resolution
streams of the network activations that the landmarks were
extracted from (F4 is lowest). Landmarks from each stream
are displayed prior to non-maximum suppression and may
overlap with those in other streams. Note that not all discov-
ered landmarks are required to have a matching pair across
seasons for localization to work.

over urban/suburban areas [7], [8]. Although human expertise
helps in these settings, there are three downsides: First,
human cognitive and visual biases could result in potentially-
useful landmarks being overlooked [9], [10]. Second, humans
are not good at pattern recognition in unstructured and
noisy terrain, whereas learning-based methods are good,
when provided enough data. Third, having humans-in-the-
loop means manual and tedious mission planning.

In this work, we propose a self-supervised landmark-
based VTRN pipeline for UAV localization across seasons.
Our primary contribution is a landmark discovery algorithm
that learns to automatically identify navigationally-useful
and seasonally-robust landmarks (Fig. 1) without requiring
human expertise. We investigate the localization potential
and robustness of individual components and demonstrate
their efficiency over current VTRN techniques.

This abstract is outlined as follows: We briefly go over
prior works in Sec. II and follow with our approach (Sec. III),
results (Sec. IV), and conclusion (Sec. V).
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Fig. 2: Flowchart of our proposed landmark-based localiza-
tion method in a UAV state estimation pipeline. The land-
mark discovery module (Step 1) extracts cropped landmark
proposals based on the activations of a CNN. Landmark
crops are encoded using a separate network (Step 2) and
matched (Step 3) against a precomputed database of georef-
erenced landmark encodings (Step 0).

II. RELEVANT WORK

Compared to local feature-based approaches, current
landmark-based VTRN approaches tend to focus on land-
marks with more semantic meaning, such as lunar craters,
roads, and buildings [4], [7], [8]. They typically consist
of three components: landmark detection, encoding, and
matching. For example, [4] localizes lunar craters using a
CNN and matches the geometric characteristics of found
craters against a georeferenced crater database to get lo-
cation. Recent works [7], [8] also leverage human-selected
landmarks such as road networks and buildings for aerial
navigation, but do not operate outside of urban environments.
These current approaches reduce the storage overhead of
local features but rely on humans to select landmark classes
for CNN training. In our work, we seek to automate landmark
discovery by directly learning from image data using a self-
supervised learning scheme.

Recent VTRN approaches eschew landmarks and directly
match globally encoded NAVCAM and database images.
[11] trains a CNN autoencoder to densely encode database
images along a 1.1 km flight path for fast location querying
using a global NAVCAM descriptor during flight. Similarly,
[12] discretizes database images of a small UAV flight area
along a grid prior to encoding and perform pose refinement
via learned local feature matching after reducing location
uncertainty via global descriptor matching. [13] also uses
global descriptor matching, but requires onboard storage
and preprocessing of georeferenced database images before
encoding to achieve illumination and viewpoint invariance.
In our work, we use global descriptors with discovered land-
marks to perform localization with a low storage overhead
to enable navigation in larger areas.

III. APPROACH

An overview of our VTRN pipeline (Fig. 2) is as follows:
Prior to flight, landmarks are discovered in georeferenced
images using a CNN, encoded with another CNN and tagged

with geocoordinates, and cached in an onboard landmark
database. During flight, landmarks from NAVCAM images
are detected, encoded, and queried against database encod-
ings to find a match. UAV position is updated, and position
uncertainty is used to restrict the database search space.

We give an overview of the self-supervised learning
scheme we use for CNN training before detailing the land-
mark discovery, encoding, and matching components that
comprise our proposed method.

A. Self-supervised Contrastive Learning

We use a self-supervised contrastive learning (SSCL)
scheme similar to [14]. Our training procedure is as follows:
for an image x, we generate two views x̃i, x̃j via random
visual perturbations commonly encountered in flight. The
views are encoded into 128-d vectors, hi,hj , via CNN
encoder f . We maximize the cosine similarity between pos-
itive vector pairs (generated from the same x) and minimize
between negative pairs (sampled from within the batch). For
a positive pair, the loss is formally defined

L(hi,hj) = − log
exp(Sc(hi,hj)/τ)∑2N

k=1 1[k ̸=i] exp(Sc(hi,hk)/τ)
(1)

where Sc denotes cosine similarity and τ is a temperature
parameter set to 0.1.

B. Landmark Discovery, Encoder, and Matching

Landmark discovery: Our algorithm uses the activations
of an HRNet CNN feature extractor [15] to find landmarks.
The HRNet is followed by a global average pool and a
fully-connected layer. To focus the network on invariant
landmarks, we train this network (Sec. III-A) to predict if
two image encodings describe the same location (positive) or
not (negative). We create image pairs using random seasonal
variations (leaf-on and leaf-off), rotation, perspective, color
jitter, and motion blur augmentations.

To localize landmarks, we extract the final activations from
the three lowest-resolution streams of the HRNet (Fig. 2),
denoted F2, F3, F4 from highest to lowest resolution. Each
activation is channel-wise averaged before upsampling to
input size and binarized via thresholding. Thresholds are
chosen based on percentile values computed over training
set activations. Landmarks are localized via contour detection
and fitted with a tight bounding box (Fig. 1). Overlapping
landmarks with an intersection-over-union (IoU) ≥ 0.4 are
non-maximum suppressed (NMS), with preference for land-
marks extracted at higher thresholds.

Landmark encoder: We use a Resnet-18 [16] encoder
to encode discovered landmarks for lightweight storage and
matching. This network is trained on discovered landmark
crops (300× 300) using the same augmentations as before.

Landmark matching: Prior to flight, landmarks are de-
tected over a target area, encoded, and cached with their
associated geocoordinates. During flight, we match NAV-
CAM landmark encodings against database encodings within
R meters of the current position estimate. A landmark pair
is a match if its similarity is over a threshold and has
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Fig. 3: Joint landmark discovery and encoding matching
results. Matching was done with 2.5 km and 25 km search
radii. Ground truth matches were counted if a landmark pair
were within 10 m or 30 m of one another.

the maximum similarity over other possible pairs. R is
hardcoded in this work, but we note that it could possibly
be adapted based on current position uncertainties.

C. Implementation and Training Details

We implement networks in PyTorch using the timm
library [17]. For landmark discovery, convolutions used re-
flection padding to avoid border effects in activation maps.
We train for 1000 epochs, using a batch size of 128 and the
Adam optimizer with a learning rate of 1e−4.

IV. RESULTS

A. Datasets

We train and evaluate our method using the aerial image
dataset from [3]. It consists of 3639 coregistered image pairs
taken over the state of Connecticut (CT) in the United States
during Spring and Summer 2016. Human-made structures,
wooded forests, agricultural fields, and bodies of water are
present, with “leaf-on vs. leaf-off” seasonal variation. We
partition each 1270×1270 image into 600×600 crops with
a 10 percent overlap and create train, val, and test splits at
a 70:15:15 ratio. Each image has a resolution of 0.6m/pixel,
resulting in 2112 km2 of total landmass covered.

Seasonal effects like snow cover is not captured over
this landmass and we leave explicit training and analysis
of winter seasonal-invariance for future work. Also, we
chose this setting with intuitive landmarks like buildings to
easily validate our discovery algorithm, as the landmarks it
proposes should overlap with those obvious to humans. In
future work, we look to extend to less intuitive settings.

B. Localization Performance

Evaluation method: We evaluate matching performance
of our VTRN pipeline via precision-recall analysis and
use database search radii R of 2.5 and 25 km, simulating
local (relatively lost) and global localization (completely
lost) scenarios, respectively. Landmark pairs with maximum
cosine similarities are considered as proposed matches in
the evaluation. Distances between such landmark pairs are
computed using the UTM coordinates at their bounding box
centers and we consider ground truth matches to be within
10 and 30 m. Finally, similarity thresholds are applied to
generate the precision-recall curves.

We test different configurations of resolution streams and
percentile thresholds (Fig. 3) and find that small, highly
salient landmarks (F2@P97.5, F3@P97.5) provide reliable
position estimates within 10 m of ground truth, especially
when paired with tighter search radii. Within 30 m of
ground truth, using larger landmarks (F4@P70, F4@P97.5)
yields best match rates. Aggregating landmarks from various
resolution streams and thresholds does not achieve best
performance but has the benefit of more landmarks for more
location updates.

C. Ablation Studies

Landmark discovery: We quantify the number and size
of the coinciding landmarks discovered using various resolu-
tion streams and percentile thresholds (Fig. 4a). In general,
masking HRNet activations using high percentile thresholds
(P97.5) increases the rate of landmark coincidence and favors
small, sparse landmarks. Landmarks are generally easier to
match when fewer but more salient landmarks are used, apart
from very large landmarks (F4@P70).

Landmark encoding: Our landmark encoder outper-
forms other common image descriptors when faced with
geometric and seasonal perturbations (Fig. 4b). We conduct
precision-recall analysis by attempting to distinguish the
encodings of an equal number of known matching and non-
matching landmark pairs. We compare against ImageNet
encodings (512-d) and VLAD [18] descriptors (2048-d).
All encodings performed well with random geometrically-
transformed landmarks from the same season, but only our
encoding method was robust when seasons were varied in
each pair, illustrating the benefit of explicitly training for
such perturbation.

D. Computation Benchmarks

We benchmark landmark discovery and encoding using
600×600 NAVCAM images. Using a Nvidia Titan RTX and
an Intel Core i9-7900X, images can be processed at 17 Hz.
Benchmarks on an Nvidia Jetson AGX Orin, simulating
small UAV use cases, sees slower rates of 8 Hz, due to slower
processing during the CPU portions of the landmark local-
ization step. We note that significant speed improvements
can be made with smaller network architectures.

As our landmarks are sparse and low-dimensional, our
method usually requires less onboard storage compared to
techniques that densely encode a flight area [11], [12] or
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Fig. 4: Ablation on landmark discovery and encoding using the Connecticut test set. (a) Metrics of coinciding landmarks
discovered at different resolution streams and various percentile threshold values. (b) Effect of common VTRN perturbations
(seasons only, geometry only, all) on the encoding similarities of known matching and non-matching landmark pairs.

require onboard reference orthoimagery [1], [3], [8], [13].
For example, to localize over Salisbury, CT, which covers
155 km2 of farmland, forests, and suburbs, 1.5 Gb is needed
to store high-resolution, orthorectified reference images (as-
suming 0.6 m/pixel NAIP imagery) for methods that use
database images during flight. Furthermore, an encoder-
based method that lacks landmark detection like [11] would
require roughly 19 Gb (extrapolated from their benchmarks).
In contrast, our method requires between 90 to 200 Mb for
the same landmass depending on configuration.

V. CONCLUSION

We presented the first landmark discovery algorithm for
aerial VTRN. We showed that SSCL can find optimal land-
marks for aerial navigation without human guidance and can
consistently re-identify them across seasons. In conjunction
with a seasonally-invariant CNN encoder, our discovery
algorithm proposes landmarks that enable robust localization
capabilities over large landmasses while demanding much
less storage memory required by other methods. For future
work, we aim to leverage our approach to better utilize
sparse local features for more precise localization and pose
estimation, integrate into a state estimation pipeline for UAV
flight, and test in rugged mountainous and desert terrain
where landmark selection is not as intuitive for humans.
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