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Abstract— This paper introduces a novel method to estimate
distance fields from noisy point clouds using Gaussian Process
(GP) regression. Distance fields, or distance functions, gained
popularity for applications like point cloud registration, odome-
try, SLAM, path planning, shape reconstruction, etc. A distance
field provides a continuous representation of the scene and is
defined as the shortest distance from any query point and the
closest surface. The key concept of the proposed method is a
reverting function used to turn a GP-inferred occupancy field
into an accurate distance field. The reverting function is specific
to the chosen GP kernel. This work provides the derivation
of the proposed GP distance field. The level of accuracy of
the proposed approach allows for novel applications that rely
on precise distance estimation. This work presents an echolo-
cation method using ultrasonic-guided waves sensing metallic
structures. This method leverages the proposed distance field
in physics-based models to simulate the signal propagation and
compare it with the actual signal received. Both simulated
and real-world experiments are conducted to demonstrate the
soundness of our method.

I. INTRODUCTION

Robotics perception is a key component of any successful
robotic system operating in the real world. The ability to
sense and interpret the surrounding environment is crucial
for navigation, planning, and overall systems performance.
The choice of map representation to model the environment
plays a vital role in the perception process. There exist many
representations, each with its own specific set of applications.
For example, dense 3D geometric point clouds are often used
for lidar Simultaneous Localisation And Mapping (SLAM),
while abstract sparse semantic maps are great tools for
high-level decision-making. This paper introduces a novel
continuous distance field representation based on Gaussian
Process (GP) regression for an application in echolocation.

A distance field is a continuous function over a given
space Rm that maps a query point x with the distance d
to the nearest object. In this paper, we will use the term
surface to denote the outer layer of all the objects in the
scene. For some regular-shaped objects, the surface can be
represented with a parametric or implicit function that equals
zero on the surface. The knowledge of such a function (eg.,
ax + by + cz + w = 0 for an infinite plane) may lead
to a closed-form expression of the distance field. In the
general case, the surface function and the distance field are
not explicitly known and in the context of robotics percep-

0 1 2 3 4 5
0

1

2

3

4 Input point cloud

0.0

0.2

0.4

0.6

0.8

1.0

Proposed distance field Real-world echolocation

Fig. 1. Illustration of the proposed GP-based distance field. Given a point
cloud, the proposed method successfully interpolates between the data points
and provides an accurate distance field (left). The right image shows a real-
world application for echolocation on metallic structures using an ultrasonic
emitter-receiver (ground truth trajectory in blue, estimated trajectory in
dashed red, and partial overlay of the GP-based distance field).

tion, surfaces are often represented with discrete samples
in the form of noisy point clouds. Inspired by Gaussian
Process Implicit Surface (GPIS) [1] and LogGPIS [2, 3],
the proposed method leverages kernel-based GP regression
[4] as a framework for interpolation between the surface
samples and generates an occupancy field over the space.
This occupancy field is then transformed into a distance
field by applying a reverting function deduced from the GP
covariance kernel. As illustrated in Fig. 1, this approach
produces an accurate continuous Euclidean distance field
with interpolation capabilities alleviating drawbacks from
other representations [2, 5].

Our method allows for new distance field applications
beyond the typical point cloud-based observations for odom-
etry, mapping and planning [3] thanks to its improved accu-
racy. We demonstrate the use of Ultrasonic Guided Waves
(UGWs) with co-located, omnidirectional emitter-receivers
on metallic plates for robotic navigation and inspection.
The availability to query accurate distances with the nearest
surface allows for the use of physics-based models of wave
propagation in the measurement model of the proposed
echolocation framework. Similarly to [6], we rely on the
comparison between the actual echoes of the excitation signal
and simulated received measurements.

In summary, the contributions of this work are the deriva-
tion of a novel GP-based distance field and its integration
into a global localisation framework using UGWs.



II. GAUSSIAN PROCESS DISTANCE FIELDS

Considering a surface S in Euclidean space Rm, let us
define the distance field d(x) with x ∈ Rm as a scalar-valued
continuous function that represents the shortest distance
between the input x and the surface S. Such a function is a
solution to the Eikonal equation

|∇d(x)|= 1 with d(x) = 0 ⇐⇒ x ∈ S. (1)

Given a set of points X = {x1, · · · ,xN} on the surface, the
aim is to estimate the Euclidean distance d̂. Unfortunately, as
per its non-linear nature, the Eikonal equation (1) does not
possess a known general closed-form solution. In this work,
we approach the distance field estimation under the scope
of occupancy field and GP regression [4] (c.f. Appendix I
for a brief background on GP regression). Let us consider a
set of points xi on the surface S and a continuous scalar-
valued field over Rm that we refer to as the occupancy field
o(x). Arbitrarily, we set the observed value of the occupancy
field to one at the locations xi ∈ S1. By modelling the
occupancy field with a GP using a covariance kernel ko,
o(x) ∼ GP (0, ko (x,x

′)), we can infer the occupancy at
any point x ∈ Rm:

ô(x) = ko(x,X)
(
Ko(X,X) + σ2

oI
)−1

1, (2)

with ko(x,X) the covariance vector between the query point
and the surface observations, and Ko(X,X) the covariance
matrix of the observations. By considering a monotonic,
stationary, isotropic kernel with an infinite domain (i.e., a
non-zero, distance-based kernel: ko (x,x′) → ko

′(∥x−x′∥),
let us define a reverting function r as

r (ko (x,x
′)) = r

(
ko

′(∥x− x′∥)
)
≜ ∥x− x′∥. (3)

The proposed distance field consists in applying this revert-
ing function to the GP-inferred occupancy field in (2) as
d̂(x) = r (ô (x)).

Our approach is related to heat-based distance methods
like [7] and [2], but the analysis of this relationship is out of
the scope of this paper due to space limitations. However, it
is important to note that the proposed representation enables
a wide range of applications similar to LogGPIS [3]: scan-
registration odometry, mapping, path planning, etc. While
the applications in [3] are based on distance fields, they
only require the minima of the field to be at the location
of the surface, and the maxima to be the furthest away from
the surface. In other words, they do not require the field
to be an accurate Euclidean distance field. The accuracy of
our method enables novel applications that require the actual
Euclidean distance such as the problem of echolocation (c.f.
Section III).

1Note that this approach differs from the definitions of GPIS where
the field is positive inside the object, negative outside, and the surface
corresponds to the zero crossing of the field.
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TABLE I
COVARIANCE KERNELS AND ASSOCIATED REVERTING FUNCTIONS (B IS

THE MODIFIED BESSEL FUNCTION OF THE SECOND KIND).

A. Intuitive interpretation

To provide the reader with an intuition about the proposed
method, let us first consider a 1D scenario with only one
noiseless data point on the surface. The inference of the
occupancy field provided by (2) is then reduced to ô(x) =
ko (x, x1). In that scenario, the reverting kernel function
provides the exact distance between the surface and the
query point x. As illustrated in Fig. 2 (left and middle),
if we consider a set of noisy points close to the surface
instead of a single noiseless measurement, the shape of the
occupancy field is similar to the ideal 1D noise-free case.
Without loss of generality, our method extends this reasoning
to higher dimensions assuming that the occupancy field along
the normal vectors to the surface is equivalent to the 1D
scenario (c.f. Fig. 2 right).

B. Kernels and reverting functions

As aforementioned, the proposed method relies on the pair
kernel/reverting function to accurately estimate the distance
field. This subsection discusses the case of the Rational
Quadratic (RQ) kernel, the Square Exponential (SE) kernel,
and a few other kernels from the Matérn family. These
kernels, in their isometric form, depend on the Euclidean
distance between the two input vectors. Accordingly, via
a simple change of variables, they can be expressed as a
function of a non-negative scalar value d = ∥x−x′∥. Table I
shows different kernels as well as their reverting function
(with σ2 as the scaling factor, and l the kernel’s lengthscale).
In the case of the RQ and SE, it is straightforward to find
the reverting function with simple algebraic manipulations.
Unfortunately, Matérn kernels do not all possess a known,
closed-form reverting function. In these scenarios, the revert-
ing “function” can be formulated as a single-value non-linear
optimisation problem.

III. ULTRASOUND ECHOLOCATION

We apply the proposed distance field to the problem of
global localisation of a system consisting of an omnidirec-
tional (no bearing information) ultrasonic emitter-receiver
in contact with a metallic structure. Industrial applications
include the automated long-range inspection of large metal
structures [6]. The proposed distance field is used in the
UGW measurement model of a Monte-Carlo localisation
algorithm.
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Fig. 2. Occupancy fields (1D and 2D) and corresponding distance according to the reverting function. The “2D” plots in the left and middle correspond,
respectively, to the occupancy and distance along the normal segment (in orange) on the right. This figure is obtained using the square exponential kernel.

A. Ultrasonic Guided Waves measurement model

Given an emitter-receiver, at every measurement step i,
a time signal s(t) is pulsed by the emitter to create an
UGW that propagates radially around the emitter, inside the
structure’s material. Simultaneously, the receiver collects the
measurement zi(t) that contains the ultrasonic echoes due
to reflections of the excited wave on structural features (the
boundaries S of a metal panel in our case study). These
measurements can be modelled by relying on the image
source model, which states that the reception of any echo
can be interpreted as a signal originating directly from a
fictive image source. The image sources’ positions depend
on the position of the actual emitter and the properties of the
surface S. With the assumption that the material is isotropic
(i.e., wave propagation is the same in any direction), the
propagation transfer is only a function of time and of the
distance between the receiver and the image source. This
results in the following measurement model:

z̃i(t) =
∑

p∈I(xi,S)

g(||p− xi||, t) ∗ s(t) + ni(t), (4)

where s(t) is the excitation used to generate the UGW, xi is
the emitter position, I(xi,S) is the set of the image sources
positions for a surface S and a real source position x, g(||p−
xi||, t) is the acoustic transfer function of the propagation
medium2, n(t) is an additive Gaussian noise term that we
assume temporally and spatially white, and ∗ denotes the
convolution operation.

We generate a correlation signal between the measurement
and the model to assess the likelihood that a single acoustic
reflection occurred at any distance d from the emitter-receiver
with:

z′i(d) =
⟨zi(t), ẑ(d, t)⟩√

⟨zi(t), zi(t)⟩⟨ẑ(d, t), ẑ(d, t)⟩
, (5)

where ẑ(d, t) = ĝ(2d, t) ∗ s(t) is the expected signal con-
taining an echo due to a reflection at a distance d, and ⟨., .⟩
denotes the usual scalar product for time-continuous signals.
We subsequently retrieve the envelope of the correlation
signals with ei(d) = |z′i(d) + jH(z′i)(d)|, with H denoting
the Hilbert transform operator. The envelope signal ranges
between 0 and 1, and it presents a local maxima in d if there

2A standard propagation model for an UGW propagating in a metal panel
is ĝ(r, ω) ≈ e−jk(ω)r/

√
k(ω)r, where k(ω) is the wavenumber of the

major acoustic mode that usually has a non-linear dependency with respect
to the pulsation ω. More details on how to determine this relation given
prior information on the plate material can be found in [8].
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Fig. 3. Example of an acoustic measurement acquired on an aluminium
plate (top plot) and the corresponding envelope signal obtained by correlat-
ing the measurement with a wave propagation model (bottom).

is indeed a reflector at such distance, as illustrated in Fig. 3.
The figure shows a distinguishable first echo that indicates
the presence of a plate boundary at 0.08m and late echoes
that will be considered noise.

B. Monte-Carlo echolocation

The objective here is to estimate the system’s position
xi by relying on ultrasonic measurements, noisy odometry
information, and given the map (the plate boundaries S)
in the form of a point cloud. To recover the position of a
moving emitter-receiver, we rely on a particle filter, as in [6].
Such filters can usually provide satisfactory solutions to
the localisation problem when the dynamic and observation
models are non-linear, and the process and measurement
noises are non-Gaussian [9], as in our case study. Yet, the
method described in [6] can only be applied to metal panels
with a rectangular shape. Hence, we propose a modification
to the calculation of the particles’ weights to make the
approach applicable to arbitrary surface geometries, using
the proposed GP-based distance field.

The modified localisation approach relies on the aforemen-
tioned envelope signals ei(d) to determine the likelihood of
each of the particles in the filter. We propose the particle filter
using the following expression for the particles’ weight:

wn
i = η exp

{
αei(d̂(x

n
i ))− βd̂2(xn

i )
}
, (6)

where d̂(xn
i ) is the GP-based distance of the n-th particle

to the closest point on the surface S computed with (2) and
the reverting function (3), η is the normalization factor, and
α and β are positive parameters. The term in d̂2(xn

i ) is a
prior used to account for the fact that the reception of the
first ultrasonic echo is less likely at a larger distance. Note
that a simpler measurement model that does not consider
regularization can also be used, but it will be less robust to
the presence of late echoes. The filter’s output corresponds
to the mean coordinates of the 50% best particles.
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Fig. 4. Localisation results with the particle filter in the simulated scenario
over 100 trials (solid line: average, coloured area: upper and lower bounds)

IV. EXPERIMENTS

To validate our novel method, we test the particle filter
with both LogGPIS and the proposed distance field (based
on the RQ kernel, α = 100) in simulation and in a real-
world setting by using experimental ultrasonic measurements
acquired on a metal panel. We consider the same setup for the
two scenarios, where the UGW propagates in an aluminium
metal panel with dimensions 600x450x6mm.

A. Simulation

We create robot paths by randomly generating linear and
rotational displacements between two successive measure-
ment points. The excitation s(t) is a two-tone burst sinusoidal
wave at 100 kHz. The ultrasonic measurements are simulated
using the image source model and an approximate wave
propagation model, as presented in Section III-A. We also
add Gaussian noise to the simulated data to maintain a
fixed signal-to-noise ratio: SNR = 10dB. The noisy odometry
inputs are generated by adding zero-mean Gaussian noise
to the ground truth translation (σt = 0.3cm) and rotational
(σr = 0.05rad) displacements, which are next presented as
inputs to the particle filter.

Fig. 4 shows the average localisation results (over 100
trials). It can be observed that, despite imperfect initialization
of the filter, the position estimate converges to the ground
truth position with centimetre accuracy. Additionally, the
proposed distance field significantly outperforms LogGPIS
[3] which consistently presents an error level three times
higher.

B. Real-world

We acquire experimental measurements in a laboratory en-
vironment with the following procedure: an emitter/receiver
pair of nearly collocated transducers, as depicted by Fig. 1
(right), is placed by hand on the vertices of a 9×12
regular grid whose positions are carefully recorded. For
every position, the same excitation signal as in the previous
scenario is used to generate the UGW, while the receiver
collects the ultrasonic response. In total, 108 measurements
were acquired. We simulate a “lawn-mower” trajectory as
a robot path by using the theoretic displacement between
the corresponding measurement positions as ground-truth
odometry. In the same way, as in the previous scenario, we
add zero-mean Gaussian noise to the resulting translation and
rotational data to generate the noisy odometry inputs.

Fig. 5 shows the localisation results achieved in this
scenario. It can be observed that the coordinate y is estimated
within centimetre accuracy, all along the trajectory. However,
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Fig. 5. Localisation results achieved with the particle filter in the real-
world scenario.
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Fig. 6. Localisation results with the particle filter with real-world data over
100 trials (solid line: average, coloured area: upper and lower bounds)

this is not the case for x, even though the estimate vaguely
converges to the true x before slightly diverging again. This
can be explained by the fact that we only rely on the echo
from the closest surface point for localisation (no bearing
information), whereas most of the data has been acquired
for sensor positions closer to a vertical boundary than a
horizontal one. It is clear that the multiple echoes contained
in the measurements should be leveraged in the future to
improve the localisation accuracy in such scenarios. In Fig. 6,
we sampled 100 trajectories by randomly selecting sequences
of measurements from the original “lawn-mower” pattern to
prevent the phenomenon mentioned above. Similarly to the
simulated scenario, the proposed distance field provides a
significantly better level of accuracy compared with LogG-
PIS [3]. Overall, these results support the relevance of using
distance fields for localisation, without relying on geometric
assumptions on the surface S.

V. CONCLUSION

In this paper, we presented a novel GP-based distance
field estimation method. Using a point cloud as input, the
proposed method first infers an occupancy value based on
standard GP regression before applying a kernel reverting
function. We demonstrated the potential of the proposed
distance field via a framework for echolocation using UGWs.

In future work, we will tackle the UGW mapping problem.
We will investigate the use of ultrasound measurements
directly in the GP model to account for the information
contained in multiple echoes of the excitation signal. This
will result in more robustness with respect to noisy mea-
surements.
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APPENDIX I
GAUSSIAN PROCESS PRELIMINARIES

Let us consider an unknown signal h(x) ∈ R with x ∈
Rm, and Q noisy observations yi defined as

yi = h (xi) + ηi, where ηi ∼ N
(
0, σ2

)
. (7)

where i = (1, · · · , Q). The goal is to infer the distribution
(mean and variance) of h for any given input x.

By modelling the signal h as a GP h ∼ GP (0, kh (x,x
′)),

with kh the covariance kernel function kh (x,x
′) =

cov (h(x), h(x′)), one can express occurrences of h as a
multivariate Gaussian distribution[

y
h(x∗)

]
= N

(
0,

[
Kh(X,X) + σ2

hI kh(x
∗,X)

⊤

kh(x
∗,X) kh (x

∗,x∗)

])
,

(8)

where y = [y1, · · · , yQ]⊤, x∗ is a query point,
kh(x

∗,X) = [kh (x
∗,x1), · · · , kh (x∗,xQ)], and

Kh(X,X) = [kh(x1,X)
⊤
, · · · ,kh(x1,X)

⊤
]. By

conditioning (8) with respect to the noisy observations, the
mean and variance of h(x∗) are respectively computed as

ĥ(x∗) = kh(x
∗,X)

(
Kh(X,X) + σ2

hI
)−1

y, and
var(h(x∗)) = kh (x

∗,x∗)− (9)

kh(x
∗,X)

(
Kh(X,X) + σ2

hI
)−1

kh(x
∗,X)

⊤
.
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